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Introduction

Predictive microbiology – or the quantitative mi-
crobial ecology of foods – represents a proactive ap-
proach to food quality and safety by accumulating in-
formation on bacterial responses related to intrinsic 
and extrinsic factors characterizing the food and its en-
vironment and summarizing the responses in databas-
es and mathematical models (Bjerre, 2014; McMeekin 
et al., 1997; McMeekin and Ross, 2002; Toldra, 2009).

Predictive microbiology in foods is a research 
area within food microbiology intended to provide 
mathematical models to predict microbial behavior in 
food environments (Fakruddin et al., 2011). Although 
the fi rst predictive models date to the beginning of the 
20th century, rapid development has occurred in re-
cent decades as a result of computer software advanc-
es. In addition to exhaustive knowledge of food mi-
crobiology, the predictive microbiology fi eld is based 
on important mathematical and modeling concepts 
that should be previously introduced for predictive 
microbiology beginners (McMeekin et al., 1997).

The diff erent typology of predictive mod-
els allows the prediction of growth, inactivation, 
or the probability of bacterial growth in foods un-
der diff erent environmental conditions and consid-
ering additional factors such as the physiological 
state of cells or interaction with other microorgan-
isms. Nowadays, predictive models have become a 
necessary tool, allowing rapid responses to specifi c 

questions. Predictive models allow the estimation 
of the shelf-life of foods, defi ne critical points in 
the production and distribution process and can 
give insight on how environmental variables af-
fect the behavior of pathogenic or spoilage bac-
teria. Furthermore, predictive models have been 
incorporated as helpful elements into the self-con-
trol systems such as Hazard Analysis for Critical 
Control Point (HACCP) programs and food safety 
risk-based metrics. National and international food 
safety policies are now based on the development 
of Quantitative Microbial Risk Assessments stud-
ies, which is greatly supported but at the same time 
is turning into an important tool for improving food 
safety and quality (Fakruddin et al., 2011; Perez-
Rodriguez and Valero, 2013). Microorganisms of 
interest are foodborne pathogens such as E. coli 
O157:H7, Listeria monocytogenes, Salmonella spp., 
Clostridium botulinum and spoilage microorgan-
isms such as Enterococcus spp., Pseudomonas spp. 
and Enterobacter spp. (Jankovic et al., 2013; 2014; 
2015; Lakicevic et al., 2014; 2015; Nastasijevic, 
2011; Nastasijevic, 2014; Nastasijevic et al., 2014).

History

The origin of predictive microbiology, as 
pointed out by Perez-Rodriguez and Valero (2013) 
is often linked to the works by Bigelow et al. (1920), 
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Bigelow (1921) and Esty and Meyer (1922), in 
which a log linear model was proposed to describe 
bacterial death kinetics by heat. Their model found 
wide application in the food industry, and especial-
ly in the canning industry. Indeed, nowadays, these 
results are still applied by the food industry to re-
duce Clostridium botulinum in “low acid” canned 
foods. This model simply says that at a given tem-
perature, the relative (or specifi c) death rate of the 
bacteria is constant with time. In other words, the 
percentage of the cell population inactivated in a 
unit time is constant. This is a simple, logical and 
understandable model, similar to those common-
ly used in physical and chemical sciences for pro-
cesses such as dissipation, diff usion, etc., when the 
force that causes the decrease of a certain quantity 
is constant with time (Baranyi et al., 1994; 2004). 
A step forward was taken by Scott (1936), who in-
vestigated how the specifi c death rate depended 
on the available water, quantifi ed today by the so-
called water activity, a dimensionless number be-
tween 0 (dry) and 1 (wet). He subsequently studied 
the eff ect of the temperature on the specifi c micro-
bial death rate. Modeling microbial growth was 
also being done in the fi eld of industrial microbi-
ology (Monod, 1949). During the 1960s and 1970s, 
several eff orts were devoted to apply mathematical 
models to inactivation of pathogens (Clostridium 
botulinum and Staphylococcus aureus) and growth 
of spoilage bacteria (Nixon, 1971; Spencer and 
Baines, 1964). Nonetheless, the great development 
of predictive microbiology started during the 1980s 
when computers and specifi c software facilitated 
the development of more complex and precise mod-
els. The term “predictive” microbiology, which is 
relatively recent, was coined by Roberts and Jarvis 
(1983), establishing the conceptual basis of modern 
predictive microbiology (Brul et al., 2008). In the 
fi rst book on the subject, McMeekin et al. (1993) 
defi ned it as a quantitative science that enables us-
ers to evaluate objectively the eff ect of processing, 
distribution and storage operations on the microbio-
logical safety and quality of foods. McMeekin et al. 
(1993) suggested, as another possible explanation 
for the development of predictive microbiology, the 
marked increase in foodborne diseases during those 
years together with a major awareness of the limita-
tions of the microbiological methods applied at that 
time. The scientific discipline of predictive microbi-
ology aims to condense microbiological knowledge 
and mathematical techniques into mathematical 
models, capable of describing and predicting micro-
bial growth in various environments, mostly related 
to food products (Baranyi and Roberts, 1994; Ross 
and McMeekin, 1994).

Development and limitations of predictive 
models

It is a general goal of food microbiologists to 
know in advance the behavior of microorganisms in 
foods under foreseeable conditions. To do so, exhaus-
tive control of physicochemical factors that could in-
fl uence microbial growth is needed (such as t, pH, aw, 
salt, etc.), as well as in-depth knowledge about the bi-
ological characteristics of the target microorganisms 
(Fakruddin et al., 2011; Hajmeer and Cliver, 2002). 

The premise behind the scientifi c basis of pre-
dictive microbiology is that microbial responses in 
foods are reproducible when considered in the con-
text of several extrinsic and intrinsic environmen-
tal factors (Ross et al, 2000). This behavior can be 
translated into diverse mathematical models that es-
timate microbial growth/inactivation/toxin produc-
tion/probability of growth etc. This emerging area 
was redefi ned recently as modeling microbial re-
sponses in foods (McMeekin et al., 2002).

Several authors suggested diff erent classifi -
cations of predictive models based on their fi nal 
purpose, the type of microorganisms to be stud-
ied, and their impact on food spoilage or food safe-
ty (Roberts, 1989; Ross and McMeekin, 2003; van 
Boeckel, 2008). 

Basically, predictive models are split up into 
three groups: survival/inactivation models, bounda-
ry (growth/no growth) models and growth models. 
Basing on their development, models can be classi-
fi ed as follows (Figure 1):

1. Primary models: aim to describe the kinetics 
of a process with as few parameters as possi-
ble while being able to accurately defi ne the 
growth and inactivation phases. They are rep-
resented as the increase/decrease in popula-
tion density against time. Primary models de-
veloped in the 90s are still widely used, but are 
mainly empirical (Baranyi and Roberts,1994; 
Buchanan et al., 1997; Geeraerd et al., 2000).

2. Secondary models: describe the eff ect of en-
vironmental conditions (physicochemical 
and biological factors) on the values of the 
parameters of a primary model. Most current-
ly-used secondary models can be subdivided 
into four classes (Adopted from Van Impe et 
al. (2013): (i) square root models (Ratkowsky 
et al., 1982; Ratkowsky et al., 2003), (ii) car-
dinal parameter models (Rosso et al., 1995; 
Sautour et al., 2001), (iii) neural networks 
(Geeraerd et al.,1998; Panagou et al., 2007), 
and (iv) response surface models (Baranyi et 
al., 1996; Geeraerd et al., 2004). Secondary 
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models used for describing the eff ect of en-
vironmental conditions on microbial growth 
include (McKellar and Lu, 2004): Arrhenius-
type models, Belehradek type models, mod-
els based on the gamma concept, cardinal pa-
rameter models, and polynomial models.

3. Tertiary models: based on computer soft-
ware programs that provide an interface be-
tween the underlying mathematics and the 
user, allowing model inputs to be entered 
and estimates to be observed through sim-
plifi ed graphical outputs. Whiting and Bu-
chanan (1997) called the foregoing integrat-
ed software-based model “tertiary models”. 
Tertiary models are the application of the 
aforementioned models, included in user-
friendly software in order that they can be 
used without additional modeling; moreo-
ver, nonmodelers can use these tertiary mod-
els (Fakruddin et al., 2011). One or more of 
the primary and secondary models are com-
piled to provide a prediction, generally cou-
pled with databases gathering the input pa-
rameters such as cardinal values, optimal 
growth rate, and so on required for running 
the simulation (McDonald and Sun, 1999). 
Usually, various factors can be specifi ed, 
such as temperature, aw, pH, NaCl concen-
tration, and so on. All of these input param-
eters used in tertiary models were previous-

ly validated in primary and/or secondary 
models. One of the main uses of such soft-
ware is in product development, since they 
let the user examine the eff ect of formula-
tion changes on the safety of the product 
without costly pilot plant trials. The soft-
ware packages that are available include: 
ComBase (www. combase.cc), Sym’Previus 
(www.symprevius.net), USDA pathogen 
(http://www.ars.usda.gov), Food Spoilage 
and Safety Predictor, (www.fssp.dtu.dk). 

Predictive microbiological models are nor-
mally developed assuming that microbial respons-
es are consistent (McMeekin et al., 2002, 2010b; 
McMeekin, 2007; Mejlholm et al., 2010). While pre-
dictive models can provide a cost-eff ective means 
to minimize microbiological testing in determining 
shelf-life, there may be occasions when the model’s 
predictions may not be accurate, due to inconsist-
ent microbial responses and variations in the growth 
media (DVFA, 2014; EC, 2005). Finally, models 
cannot be applied if a validation process is not pre-
viously accomplished, which typically consists of 
confi rming the predictions experimentally, using a 
quantitative method. The validation process is con-
ducted considering biological knowledge of the sys-
tem and statistical tools. Once models are validated 
and users are aware of the limitations of the models, 
they are useful tools to obtain information and make 

Figure 1.  Theoretical presentation of the bacterial growth curve with four phases: (i) lag phase, (ii) 
exponential growth phase, (iii) stationary phase and (iv) decline (Perez-Rodriguez and Valero, 2013) 
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decisions for the following situations (Alzamora et 
al., 2000a; Buchanan and Whiting, 1997): 

1. Prediction of safety: Estimate the risk of 
growth or survival of pathogens during food 
processing. 

2. Quality control: Improve systems like 
HACCP (Hazard Analysis of Critical Con-
trol Points) to ensure food safety. 

3. Product development: Redesign processes 
and recipes, set priorities in product design 
and evaluation. 

4. Data analysis and laboratory planning: 
The model could save resources, time, and 
money. 

5. Risk assessment models: Evaluate the prob-
ability that a food could cause foodborne ill-
ness

Microbial modeling and applications of 
predictive microbiology

Microbial modeling

In all predictive microbiology, a prediction 
must only be used as a guide to the response of 
microorganism(s) to a particular set of environmen-
tal conditions (pH, aw, t). However, food businesses 
should never rely solely on any predictive microbi-
ological model to determine the safety of foods and/
or processing systems (Toldra, 2009). Determining 
the growth, survival or inactivation of pathogens in 
food requires (FDA, 2015):

1. The determination of the intrinsic and extrin-
sic properties of the product, taking into ac-
count the storage and processing conditions, 

Figure 2.  Schematic development, classifi cation, and some examples of predictive microbiology models in 
food products (Adopted from Fakruddin et al., 2011; McDonald and Sun, 1999).
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the possibilities for contamination and the 
foreseen shelf-life.

2. Consultation of available scientifi c litera-
ture and research data regarding the surviv-
al, growth and inactivation of microorgan-
isms of concern.

3. Where necessary on the basis of these stud-
ies food businesses should also conduct ad-
ditional studies which may include:

4. Laboratory-based microbiological sampling 
and analysis.

5. Predictive microbiological modeling.
6. Challenge tests to investigate the ability of 

microorganisms of concern to grow or sur-
vive in the food product under reasonably 
foreseeable conditions of distribution and 
storage (no challenge testing for Campylo-

bacter spp., Shigella spp. and Yersinia enter-
ocolitica are recommended because other or-
ganisms, such as Salmonella, have similar 
routes of contamination and are easier to cul-
ture and have less fastidious growth and sur-
vival requirements (FDA, 2015). 

7. Predictive microbiological models are also 
useful when the shelf-life has been deter-
mined, but the product is then subject to a 
minor process or formulation change (either 
planned or unplanned through loss of process 
control). A predictive microbiological model 
can then be used to initially establish if the 
change might have any eff ect on the safety 
and shelf-life of the product. Table 1 shows 
predicted pH limits for growth (p=0.5, 0.1, 
0.01) of selected pathogens at various aw and 
temperature conditions (EFSA, 2012).

Table 1.  Predicted pH limits for growth (p = 0.5, 0.1, 0.01) of selected pathogens at various aw and 
temperature conditions (EFSA, 2012)

Pathogen aw

Predicted pH limits at various aw, temperature and p-values

5°C P 10°C P 15°C P 25°C P

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

Listeria 
monocytogenes
(Koutsoumanis et al., 
2004)

0.99
0.98
0.97
0.96
0.95

4.76
4.84 
4.96 
5.10 
5.28

4.69
4.77 
4.87 
5.00 
5.16

4.61
4.69 
4.79 
4.91 
5.05

4.45
4.53 
4.62 
4.73 
4.86

4.39
4.47 
4.56 
4.66 
4.78

4.34
4.41
4.49
4.60
4.71

4.29
4.37 
4.46 
4.56 
4.68

4.24
4.32 
4.41 
4.51 
4.61

4.19
4.26 
4.35 
4.44 
4.55

4.23
4.32 
4.43 
4.54 
4.66

4.19
4.28 
4.38 
4.48 
4.60

4.14
4.23
4.33
4.43
4.54

Salmonella
(Koutsoumanis et al., 
2004)

0.99
0.98
0.97
0.96
0.95

–

4.66 
4.85 
5.04 
5.24 
5.47

4.41 
4.61 
4.80 
4.98 
5.17

4.37 
4.56 
4.74 
4.92 
5.10

4.40 
4.56 
4.71 
4.86 
5.02

4.18 
4.35 
4.51 
4.65 
4.80

4.14 
4.31 
4.45 
4.59 
4.73

3.95 
4.23 
4.45 
4.66 
4.88

3.91
4.06
4.18
4.29
4.39

3.87
4.01
4.13
4.23
4.33

Escherichia coli 
O157:H7
(Skandamis et al., 
2007)

0.99
0.98
0.97
0.96
0.95

–

5.31 
5.16 
6.20

–
–

5.10 
5.02 
5.95

–
–

4.89
4.88
5.69

–
–

4.46
4.63
5.28

–
–

4.33 
4.51 
5.09 
6.69

–

4.20 
4.38 
4.89 
6.06

–

3.94 
4.03 
4.38 
5.01

–

3.83 
3.92 
4.22 
4.74

–

3.72
3.80
4.05
4.48
5.80

Bacillus cereus
(Lanciotti et al., 
2001)

0.99
0.98
0.97
0.96
0.95

– – – – –

4.85 
4.92 
5.10 
6.02

–

– –

Staphylococcus 
aureus
(Lanciotti et al., 
2001)

0.99
0.98
0.97
0.96
0.95

– –

5.44 
5.64 
5.97 
6.66

–

5.22
5.39
5.66
6.24

–

5.03 
5.16 
5.38 
5.85

–

4.79
4.89
5.06
5.40
7.39

4.68 
4.77 
4.90 
5.19 
6.85

4.59
4.65
4.77
5.00
6.36
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Applications of predictive microbiology

Some of the applications of predictive microbi-
ology are listed in Table 2.

Limitations of predictive microbiology

Even though predictive microbiology models 
are widely used when correctly validated, they have 
several limitations because of the complexity of mi-
crobial behavior and food systems. 

Mathematical models are simplifi cations of 
complex biochemical processes and in some cas-
es, not every important variable or factor that af-
fects the system is included in the model (Alzamora 
et al., 2005; Buchanan and Whiting, 1997). Usually, 
models are not designed for the same conditions in 
which microorganisms exist in food systems (bio-
fi lms, starved and unknown nutrients, among many 
others), since the majority of the data to generate the 
predictive models are derived from broth-based ex-
periments. It is known that bacterial pathogens are 
more resistant in real food products than in broth 
cultures (Alzamora et al., 2005). Most of the models 
describe changes of microbial behavior for homoge-
neous populations; nevertheless, competition among 

microorganisms aff ects the food environment, and 
models do not account for this (Lebert and Lebert, 
2006). 

Some models make a good description of lin-
ear relationships; but when more than one factor is 
involved, reparameterization of the model becomes 
necessary. 

It is important the model developer clearly 
specify directly or through the model what the lim-
its of the model are, i.e., what microorganisms, what 
factors, what ranges of each factor and what combi-
nations of factors will give valid answers. The pres-
ence of additional inhibitory factors in a food, and 
which have not been included in the model, inval-
idates the model or requires caution to be used to 
interpret the predictions. Currently, growth mod-
els do not usually include factors such as anion ef-
fects from the acidulent used, phosphates, sorbates, 
and bacteriocins, and humectants other than sodium 
chloride. No broth models include competition from 
other microorganisms. Some models developed with 
foods include the “normal” spoilage microbiota, but 
how this microbiota changes in species and number 
with plant or season and the eff ect upon the mod-
eled microorganism is largely unknown (Van Impe 
et al., 2013).

Table 2.  Applications of predictive microbiology (according to Fakruddin et al., 2011)

Area of Application Example

Hazard Analysis Critical Control Point 
(HACCP)

Preliminary hazard analysis identifi cation and 
establishment of critical control point(s) 
Corrective actions 
Assessment of importance of interaction between 
variables
Risk assessment

Risk assessment Estimation of changes in microbial numbers in a 
production chain 
Assessment of exposure to a particular pathogen

Microbial shelf life studies Prediction of the growth of specifi c food spoilage 
microorganisms
Prediction of growth of specifi c foodborne pathogens

Product research and development Eff ect of altering product composition on food safety and 
spoilage 
Eff ect of processing on food safety and spoilage
Evaluation of eff ect of out-of-specifi cation circumstances 

Temperature function integration and 
hygiene regulatory activity

Consequence of temperature in the cold chain for safety 
and spoilage

Education Education on safety, especially non-technical people

Design of experiments Number of samples to be prepared
Defi ning suitable intervals between sampling
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Because pathogens grow in most foods, the im-
portant question, then, is whether the pathogens will 
grow to a signifi cant population before the spoilage 
microbiota causes the food to be rejected by the con-
sumer. There is a need for systematic modeling of 
representative classes of spoilage microorganisms 
so tertiary models can then plot comparative growth 
curves for both pathogenic and spoilage organisms. 
For some pathogens with very low infective or tox-
ic dose, such as Listeria, Yersinia and C. botulinum, 
the criteria may be growth-no growth and the spoil-
age fl ora has little signifi cance unless they alter the 
environment by lowering the pH or produce a bacte-
riocin (Fakrudin, 2011).

Risk analysis and predictive microbiology

Management of foodborne threats is an ongo-
ing challenge due to changes in primary and second-
ary production, microbial adaption, increases in in-
ternational trade, changes in consumer demands and 
behavioral and demographic changes. Risk analysis 
has been introduced as a means to face these chal-
lenges and to evaluate and control microbial risks 
(Bjerre, 2014). Risk analysis includes three compo-
nents; (i) risk assessment, (ii) risk management and 
(iii) risk communication (CAC/GL 63- 2007). Risk 
assessment is the scientifi c evaluation of known or 
potential adverse health eff ects of a food product 
and comprises: hazard identifi cation, hazard char-
acterization, exposure assessment and risk char-
acterization (Marvin et al., 2009). The outcome of 
the risk characterization is an estimate of the likeli-
hood of adverse health eff ects in the population due 
to exposure to the hazard in question (FAO/WHO, 
1995). In a quantitative microbiological risk assess-
ment, the exposure assessment describes the routes 
by which the microbiological hazard can be intro-
duced, distributed and altered during the production, 
distribution and consumption of a given food prod-
uct (WHO/FAO, 2004).

Predictive microbiology is of particular inter-
est in relation to evaluation of alterations in num-
bers (increase or decrease) of the hazard over time. 
For quantitative risk analyses, it is often stated that 
data is lacking and available data often originate 
from modeling experiments with, for example, un-
realistically high initial bacterial numbers. In gen-
eral, high quality, relevant and timely data is lack-
ing (Gardner, 2004; Ross and Sumner, 2002; WHO/
FAO, 2004). In spite of that, as a means to provide 
information and to fi ll data gaps, predictive models 
for growth and inactivation can be helpful and effi  -
cient tools. Predictive models, successfully validated 

in growth environments comparable to the products 
of concern, can be used to predict the eff ect of intrin-
sic and extrinsic factors on the response of the path-
ogen in question (Toldra, 2009). This quantifi cation 
is important since the eff ects of both spoilage and 
pathogenic microorganisms are highly correlated to 
the number of microbes present in the food product 
at the point of consumption (Bjerre, 2014).

Future perspectives

Foods are complex feedback systems. 
Generally, substantial quantities of data have been 
derived from modeling studies conducted un-
der experimental conditions, but this data is of-
ten not immediately relevant to real-life condi-
tions for the pathogen, the food vehicle or the 
consumer. Mathematical models are able to bridge 
some gaps but are also an approximation of real-
ity. Evidently, modelers need to be diligent when 
relating and extrapolating data, and using or in-
terpreting mathematical growth models and their 
outcomes, particularly when conducting expo-
sure assessment and hazard characterization, as 
these impact on the validity of a risk characteri-
zation. Additionally, estimation of pathogen prev-
alence and level (number) in food products is key 
for exposure assessment and indispensable for the 
generation of reliable risk estimates (ILSI, 2010). 
Thus, risk assessors require an understanding of 
the biology and ecology of the pathogen(s), and 
of the properties of food materials they investi-
gate. Often, dose-response models are the element 
where least information is available. Risk assess-
ments should include an integral evaluation of the 
quality of data and models that are included and 
this is often accomplished by including an explic-
it evaluation concerning uncertainty and variabili-
ty in the risk characterization outcome. 

Besides a move towards stochastic modeling 
approaches, other subjects are also forecasted to be 
a part of the future of predictive microbiology. In 
2004, Bernaerts and co-workers strongly advocat-
ed for the development of more mechanistically-in-
spired predictive models in order to obtain a better 
understanding of the underlying mechanisms, but 
also to develop more robust models (Bernaerts et 
al., 2004). McMeekin et al. (2010) suggested focus-
ing on the ecophysiology of foodborne pathogens 
and to model growth responses from, for example, 
thermodynamics. The introduction of systems biol-
ogy into predictive microbiology has been suggest-
ed by Brul et al. (2008) and Van Impe et al. (2013) in 
order to apply “bottom-up” approaches and to work 
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at the microscopic level e.g. by developing metabol-
ic network-based modeling approaches. Belief in 
systems-biology as an integrated part of predictive 
microbiology has also been expressed by McMeekin 
et al. (2013) in order to induce a shift from empirical 

predictive microbiology towards mechanistic pre-
dictive systems biology models. These new, emerg-
ing approaches within predictive microbiology 
should be considered and, if obtainable, tested when 
developing new models.
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