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Introduction
Meat has always played a significant role in 

human diets all over the world (Jiang et al., 2020a). 
Humans require meat and meat products in order to 
acquire some basic vitamins, amino acids, proteins, 
and other useful components (Jiang et al., 2020b). 
Pork, beef, lamb, chicken, tuna and other muscle 
foods are perishable and susceptible to alterations. 
Microbial growth, colour characteristics, tenderness, 
marbling, fat content, moisture content (MC) and pH 
affect certain important quality parameters during the 
post-mortem storage (Cheng et al., 2017). Further-
more, unscrupulous merchants sell adulterated meat 
products in which cheaper meat, animal offal, meat 
unfit for human consumption, and non-meat synthetic 
chemical materials are added for profiteering purpos-
es. Authenticity testing to detect adulteration in meat 
and meat products is increasingly vital as trade glo-
balises (Zhao et al., 2019). Consumers and producers 
equally are concerned about the safety of their meat.

Traditional detection approaches have been 
introduced, including chromatography, immunologi-
cal procedures, electrophoretic separation of proteins 
and techniques focused on DNA, as well as manual 
sorting. These procedures, on the other hand, are time 
consuming, damaging, demand complicated labora-
tory analyses and produce many chemicals, generat-
ing toxic waste and polluting the environment (Zhao 

et al., 2019, Cheng et al., 2017). Hyperspectral imag-
ing (HSI) is a comparatively recent advancement that 
allows for real-time measurement. This approach 
incorporates conventional optical imaging and spec-
troscopy into a single device that at the same time can 
obtain both spectral and spatial data for an element. On 
account of its spectral signature, spectroscopy detects 
or evaluates the analytical signal, and imaging con-
verts the acquired data as distribution maps for spa-
tial visualisation. Following that, HIS can be applied 
to variety of areas. The meat industry has been pay-
ing special attention to HSI techniques. Tenderness, 
colour, water holding capacity, drip loss, springiness, 
chewiness, chemical composition, microbial spoilage, 
authenticity, freshness, and identification of adultera-
tion in meat, fish, and poultry are some of the applica-
tions. A variety of studies on HSI for measuring meat 
quality and safety have been published. However, this 
review addresses the application of HSI for the assess-
ment of both quality and safety parameters of meat.

Hyperspectral Imaging (HSI) System

HSI has been researched for more than two dec-
ades and is one of the most commonly used advanced 
food investigation methods. HSI’s food identifica-
tion ability has been shown in a number of publica-
tions, including for poultry and meat products, fruits 
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and vegetables, cereals and others (Ma et al., 2019). 
It is a non-destructive food quality and safety testing 
platform that uses accelerated inspection. Every pix-
el in the image produced comprises the spectrum of 
that particular location, i.e., the light-absorbing and/
or scattering properties in the spatial field, which can 
be used to describe the pixel composition. The entire 
meat chain uses or will use HSI approaches at differ-
ent levels (Achata et al., 2020).

Components of HSI
The major components of HSI are a camera 

with a charge-coupled device (CCD)/CMOS detec-
tor, objective lens, light source, transporter stage, 
computer with image acquisition and data processing 
software, motor and power supply. A regular zoom 
lens, an extremely specific and sensitive spectrograph 
and a charge-coupled device or complementary met-
al-oxide semiconductor camera complete the imag-
ing unit, which is a key component for constructing 
spatial and spectral knowledge of food specimens. 
The spectrograph’s job is to scatter the captured light 
into a continuous “electromagnetic spectrum”. Most 
HSI spectrographs include optical instruments like 
prisms, diffraction gratings and automatically regu-
lated liquid crystal tuneable filters or acousto-optic 
tuneable filters to accomplish this goal. In HSI sys-
tems, the light source is critical because it acts as an 
optical probe in detecting the chemical components 
and physical structure of the target foods. In hyper-
spectral reflectance and transmittance imaging sys-
tems, a halogen lamp is frequently used to illuminate 
the target area with a wider spectral range in the visi-
ble-near infrared region (VNIR) region.

Principle and Fundamentals of 
Hyperspectral Imaging

The HSI approach integrates classical optical 
spectroscopy and computer vision into a single sys-
tem that simultaneously generates spectral and spa-
tial information about the specimens being tested. 
The classical spectroscopic equipment produces a sin-
gle spectrum I (λ), where an imaging system typically 
produces an image in two dimensional (2-D) data I. As 
a result, a 3-D hypercube I , λ) is formed. It could be 
described as a distinct spatial image I for each wave-
length (λ) or as a spectrum I (λ) for each single pixel.

By converting incident photons into electrons, 
the area is detected using a CCD that can control 
and quantify the intensity of the light received. The 
hyperspectral images are acquired and calibrated 

using a computer control system, which also con-
trols the exposure duration, motor speed, combining 
mode and wavelength range. Scanning of point, line 
and region are also terms that describe HIS acquisi-
tion techniques. Reflecting, transmitting and inter-
acting properties of the image-sensing models are 
used to distinguish the light source and the optical 
detector settings.

Since HIS is described as fast, non-destructive, 
non-intrusive, environmentally safe and a non-chemi-
cal tool, it can be used for effectively evaluating food 
quality in laboratories and research settings, and it 
has a lot of promise for replacing conventional ana-
lytical techniques in on-line industrial applications. In 
the hypercube structure, the derived spatial and spec-
tral data must be statistically processed as thousands 
of spectra (to give the spectral signature) scattered 
across the calculated region (the spatial signature).

Chemo metric analysis is extremely useful 
for analysing hypercube data. Chemometrics has 
the potential to minimise the difficulty in acquiring 
large data sets, to generate classifying and predicting 
models and to improve the precision and strength of 
spectral data analysis models. To limit and correct 
potential interferences associated with scattering, 
baseline drift, path-length variance and overlapping 
bands, spectral pre-treatment methods such as multi-
plicative scatter correction (MSC), standard normal 
variate (SNV), smoothing, baseline removal and 
first as well as second derivatives are used. Regres-
sion coefficient analysis (RC), principal component 
analysis (PCA), successive projections algorithm 
(SPA), uninformative variable elimination (UVE) 
and genetic algorithms (GA) are common tech-
niques for selecting the highly educative regions of 
spectra/optimum wavelengths to simplify the mod-
elling and model construction. Partial least squares 
regression (PLSR), multiple linear regression 
(MLR),  least squares-support vector machine (LS-
SVM) and artificial neural network (ANN) are some 
of the most commonly used modelling approach-
es for quantitative analysis. The resulting system is 
evaluated using numerous statistical parameters that 
include: calibration (C), cross-validation (CV), and 
prediction (P) determination coefficients; the corre-
sponding root mean square errors calculated by cal-
ibration (RMSEC), cross-validation (RMSECV) or 
prediction (RMSEP), and; the overall indication fac-
tor that is the residual predictive deviation (RPD). In 
general, a good model should have higher C, CV, P, 
and RPD values and lower RMSEC, RMSECV, and 
RMSEP values, while there should be slight discrep-
ancy between them (Cheng et al., 2017).
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Quality Evaluation

The quality of meat and meat products, which 
is influenced by their tenderness, colour, pH, MC, 

fat, marbling, microbial level and adulteration, was 
evaluated using the HSI systems presented in Table 
1. Various statistical methods that were used for 
detection are also shown in Table 1.

Figure1.  Data acquisition using hyperspectral imaging with the multivariate analysis model.
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Table 1.  Assessment of meat quality and safety traits using hyperspectral imaging

Tested meat 
specimen Parameter Model Spectral 

Range (nm) Accuracy Values Reference

Beef Tenderness HSI-NIR, PLSR 900–1700 nm cv – 0.83,
RMSECV – 40.75 N

(ElMasry et al., 
2012)

Fresh Boiler 
Breast Fillets Tenderness HSI - PLS-DA 400–1000 nm Rp – 0.84 (Jiang et al., 

2018)

Beef Tenderness VNIR- HSI 400–1000 nm SSF – 205.8 to 254.8 N
Efficiency – 94.40%

(Naganathan et 
al., 2008)

Beef Tenderness HSI - NIR, MLR 900–1700 nm R – 0.89 (Saadatian et al., 
2015)

Beef Tenderness HSI - WBS 496–1036 nm R – 0.67 (Cluff et al., 2008)

Hanging Beef 
Carcasses Tenderness HSI 400–1000 nm SSF – 18.9% TO 81.1%,

Efficiency – 87.60%
(Naganathan et 

al., 2015)

Salmon Fillets 
(Raw Farmed) Tenderness

VNIR - HSI, 
PLSR & LS-

SVM
400–1720 nm

Rp – 0.949,
RMSEP – 1.089,

RPD – 2.339
(He et al., 2014)
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Tested meat 
specimen Parameter Model Spectral 

Range (nm) Accuracy Values Reference

Chicken 
breast fillets Colour (L*) HSI, PLSR 400–1000 nm L* - Rp − 0.85,

RMSEP − 40.75 N (Yang et al., 2021)

Salmon Fillet Colour 
(L*a*b*) LW-NIR - HSI 900–1700 nm 

@ 256 bands

L* => Rp − 0.864
RMSEP − 2.424
a* => Rp − 0.736
RMSEP − 1.454
b*=>Rp − 0.798
RMSEP − 2.060

(Wu et al., 2012)

Beef, Lamb, 
Pork

Colour 
(L*a*b*) HSI - MLR 400–1000 nm

L* => p − 0.94
RMSEP − 1.89
a* => p − 0.91
RMSEP − 1.40
b* => p − 0.83
RMSEP − 1.37

(Kamruzzaman et 
al., 2016)

Beef Colour 
(L*a*b*) HSI-NIR, PLSR 900–1700 nm

L* => cv – 0.88
RMSECV – 1.21

a* => *not satisfactory
b * => cv – 0.81
RMSCV – 0.58

(ElMasry et al., 
2012)

Beef Colour 
(L*a*b*)

HSI, SG-RC-
MLR 400–1000 nm

L* => p – 0.858
RMSEP – 0.808
a* => p – 0.890
RMSEP – 0.735
b* => p – 0.8161
RMSEP – 0.521

(Liu et al., 2018)

Turkey Ham Colour 
(L*a*b*) HSI-NIR, PLSR 900–1700 nm

L* => cv – 0.18
RMSECV – 1.66
a* => cv – 0.74

RMSECV – 0.35
b* => cv – 0.49

RMSECV – 0.89

(Iqbal et al., 2013)

Chicken 
breast fillets pH HSI-VNIR, 

PLSR
400–1000 nm 
@473 bands

Rp – 0.854
RMSEP – 0.13 (Yang et al., 2021)

Beef pH HSI-NIR, PLSR 900–1700 nm cv – 0.73
RMSEP – 0.06

(ElMasry et al., 
2012)

Chicken pH HSI-VNIR, 
PLSR 400–1000 nm  – 0.80 to 0.84

RMSE – 0.16 to 0.18
(Kaswati et al., 

2020)

Beef pH HSI - SVM 400–1000 nm 99% accuracy
pH – 5.8

(Crichton et al., 
2017)

Salted Pork pH HSI, PLSR 400–1000 nm p – 0.794
RMSEP – 0.086 (Liu et al., 2014)

Turkey Ham pH NIR - HSI, PLSR 900–1700 nm cv – 0.81
RMSECV – 0.02 (Iqbal et al., 2013)

Beef Moisture 
Content

HSI, SG-SPA-
LS-SVM 400–1000 nm p – 0.869

RMSEP – 1.304 (Liu et al., 2018)

Ground Beef Moisture 
Content NIR-HSI, PLS 880–1720 nm

p – 0.82
RMSEP – 1.77% (w/w) (Zhao et al., 2017)

Lamb meat Moisture 
Content NIR-HSI, PLSR 900 –1700 nm p – 0.88

RPD – 2.63
(Kamruzzaman et 

al., 2012)
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Tested meat 
specimen Parameter Model Spectral 

Range (nm) Accuracy Values Reference

Turkey Ham Moisture 
Content NIR-HSI, PLSR 900 –1700 nm cv – 0.88

RMSECV – 2.51 (Iqbal et al., 2013)

Pork Moisture 
Content HSI, PLSR 400–1000 nm

p – 0.94
RMSEP – 0.7682 (Ma et al., 2017)

Cooked Beef Moisture 
Content

HSI, BP-ANN, 
PLSR

400–1000 nm 
@ 774 bands

p – 0.977
RMSEP – 0.915 (Yang et al., 2017)

Salmon Fish Moisture 
Content

HSI, PLSR & 
LS-SVM 400–1753 nm

Rp – 0.815 to 0.970
RMSEP – 0.312% to 

1.147%
(Wu and Sun, 

2013a)

Beef Microbial 
Growth - TVC

VNIR- HSI, 
PLSR 957–1664 nm

p – 0.86
RMSEP – 0.89 log CFU/g (Achata et al., 

2020)

Chicken

Microbial 
Growth - Pseu-
domonas spp. 

& Enterobacte-
riaceae

NIR- HSI, MSC-
PLS 900–1700 nm

Rp – 0.954
RMSEP – 0.396 log10 

CFU/g
(Jiang et al., 

2021)

Spiced Beef
Microbial 

Growth - Total 
Viable Count

HSI, N-PLS 400–1000 nm 
@ 774bands

p – 0.934
RMSEP – 0.755 (Yang et al., 2018)

Pork Meat
Microbial 

Growth - Total 
Viable Count

HSI 430–960 nm
p – 0.8308

RMSECV – 0.243 log 
CFU/g

(Huang et al., 
2013)

Chicken Meat 
Surface

Bacterial 
Contamination 
- Total Viable 

Count
HSI - TBFI 400–1000 nm  – 0.6833 (Ye et al., 2016)

Grass Carp 
Fish Flesh

Microbial 
Growth - E. coli

HSI - PLSR & 
MLR 400–1000 nm p – 0.870

RMSEP – 0.274 log CFU/g
(Cheng and Sun, 

2015)

Porcine meat 
(pork)

Microbial 
Growth - TVC, 

PPC
HSI - NIR 900–1700 nm 

@ 256 bands  – 0.82 to 0.85 (Barbin et al., 
2013)

Salmon Flesh
Microbial 

Growth - Total 
Viable Count

TS-HSI-VNIR, 
PLSR 400–1700 nm

p – 0.985
RMSEP – 0.280 (Wu and Sun, 

2013b)

Pork Meat Microbial 
Growth - E. coli

HSI - Gompertz 
function 400–1100 nm Rcv – 0.939

RMSECV – 0.6369
(Tao and Peng, 

2014)

Beef & 
Chicken

Adulteration 
of beef with 

chicken
HSI, GD-RC 380–1000 nm, 

with 950bands
Rp – 0.9831

RMSEP – 0.0319 (Zhao et al., 2020)

Beef
Adulteration 
of beef with 
spoiled beef

VNIR - HSI, 
methods - PLSR, 

SVM
496–1000 nm, 

250 bands
p – 0.95

RMSEP – 5.67% (Zhao et al., 2019)

Beef
Adulteration of 
beef with duck 

meat

VNIR - HSI, 
methods - PLSR, 

PCR
400–1000 nm p – 0.96

RMSEP – 6.58%
(Jiang et al., 

2019)

Beef & Pork
Adulteration 
of plant and 

animal based in 
beef & pork

HSI, PLSR 400–1000 nm R – 0.69
RPD – 1.41 to 2.82

(Rady and 
Adedeji, 2020)
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Tested meat 
specimen Parameter Model Spectral 

Range (nm) Accuracy Values Reference

Chicken
Adulteration of 
chicken with 
carrageenan

VNIR - HSI, 
PLSR 400–1000 nm p – 0.85

RMSEP – 0.93
(Zhang et al., 

2019)

Pork Minced

Adulteration 
of minced pork 

with minced 
pork jowl meat

HSI, RC-PLSR 400–1000 nm p – 0.9063
RMSEP – 13.93%

(Jiang et al., 
2020a)

Minced Beef

Adulteration 
of minced beef 

with pork & 
duck meat

NIR - HSI, DA 
/ PLS 980–1800 nm Rp – 91.62 to 95.8%

RMSEP – 9.27 to 10.3 (Leng et al., 2020)

Lamb, Beef, 
Pork

Adulteration of 
red meat HSI, SVM/CNN 548–1701 nm 94.40% accuracy (Al-Sarayreh et 

al., 2018)

Prawn
Adulteration 

of prawn with 
gelatin

HSI, LS-SVM 441–1030 nm p – 0.962
RMSEP – 0.339 (Wu et al., 2013)

Minced Beef

Adulteration 
level of minced 
beef with horse 

meat

VNIR - HSI, 
PLSR 400–1000 nm p – 0.98

RMSEP – 2.20%
(Kamruzzman et 

al. 2015)

Pork Minced

Adulteration 
pork minced 

with fats of leaf 
lard

HSI, PLSR 400–1000 nm p – 0.98
RMSEP – 4.87%

(Jiang et al., 
2020b)

Beef Marbling HSI - PLSR 400–1000 nm Rp – 0.95
RMSEP – 0.3BMS

(Aredo et al., 
2017)

Pork Marbling HSI - NIR 900–1700 nm Rp – 0.90
RMSEP – 0.52

(Huang et al., 
2014)

Pork Marbling HSI 430–1000 nm 3.0 to 5.0 % (Qiao et al., 2007)

Beef Marbling HSI 400–1100 nm cv – 0.92
RMSEP – 0.45 (Li et al., 2011)

Beef Marbling HSI 400–1000 nm  – 0.91 (Lohumi et al., 
2016)

Beef Marbling HSI 400–1000 nm Error – 0.08%
Level of prediction – 0.99%

(Velásquez et al., 
2017)

Ground Beef Fat NIR-HSI, PLS 880–1720 nm
p – 0.90

RMSEP – 1.72 to 1.83% 
(w/w)

(Zhao et al., 2017)

Lamb meat Fat NIR-HSI, PLSR 900–1700 nm p – 0.88
RPD – 3.20

(Kamruzzaman et 
al., 2012)

Pork Fat HSI - PLSR 900–1700 nm
– C14:0 to C18:2

RMSECV – 0.087 to 0.304 
mg/g

(Kucha et al., 
2020)

Pork Fat NIR-HSI 900–1700 nm Rp – 0.83 (Huang et al., 
2017)

Salmon fillets Fat NIR-HSI, LV-
SVM 900–1700 nm Rp – 0.9685

RMSEP – 1.1750
(Zhang et al., 

2020)

Lamb Fat HSI 954–1677 nm  – 0.59
RMSE – 2.34 mm

(Rahman et al., 
2018)
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Tenderness

Tenderness is an essential trait of meat consist-
ency, characterised by chewing ease. It has been com-
monly used as a consumer-perceived proxy for the 
eating consistency of beef (Jiang et al., 2018). Con-
sumer approval of meat is based on tenderness, so it is 
vital for the meat industry to deliver high-quality, safe-
to-eat, tender meat (Saadatian et al., 2015). Flaws in 
meat quality, particularly in tenderness, have resulted 
in lower consumer loyalty and, as a result, lower mar-
ket share. According to recent reports, about 15–20% 
of meats offered to consumers are not tender (Cluff 
et al., 2008). In the meat industry, meat tenderness is 
currently determined mostly by the use of shear force 
equipment or sensory evaluation. These techniques, on 
the other hand, are time-consuming, destructive, and 
incompatible with the rapid-paced manufacturing and 
processing environments used in meat plants (Tao and 
Peng, 2014). Cluff et al. (2008) combined HSI with 
Warner-Bratzler shear force (WBSF) to collect tender-
ness reference values. The established model predicted 
WBSF scores (R = 0.67). However, the applied mod-
el showed limitations in predicting tenderness in beef. 
ElMasry et al. (2012) combined HSI operating in near 
the infrared region (NIR) with a PLSR model, which 
resulted in good prediction in the 900–1700 nm range 
(c  0.91, RMSEC – 29.42 N, cv – 0.83, RMSECV 
– 40.75 N). More research is required to improve the 
model’s prediction, accuracy and reliability. He et al. 
(2014) demonstrated tenderness evaluation in fresh 
farmed salmon fillet with HSI operating in VNIR at 
400–1700 nm combined with PLSR and LS-SVM 
models, which resulted in the strongest performance 
among the systems examined (Rp – 0.905, RMSEP – 
1.089, RPD – 2.339). The results indicated that com-
bining HSI with LS-SVM showed better performance 
for predicting tenderness in salmon fillets. Jiang et al. 
(2018) used HSI combined with a PLS-DA model in 
the spectral range 400–100 nm for fresh chicken, and 
showed the model strongly predicted tenderness (Rp – 
0.84, RC – 0.94). Similarly, pork meat tenderness ana-
lysed using HSI combined with MLR model showed 
reasonably good prediction (Rcv – 0.949, RC – 0.995, 
SEC – 2.796, SECV – 5.702).

Colour

In the meat industry and meat science study, 
colour is a significant element that is widely seen 
as a quality index. Consumers identify colour loss 
mainly as an indicator of lack of freshness and 
wholesomeness, so colour has been identified as a 

crucial meat quality attribute that affects the pur-
chasing decision (Kamruzzaman et al., 2016). Meat 
colour is also affected by the amount of protein pig-
ments and myoglobin in the muscle. The quality and 
proportion of bound myoglobin establishes lightness 
(L*), redness/greenness (a*) and yellowness/blue-
ness (b*) values (Liu et al., 2018). L* values are used 
to categorise pork into three groups, i.e. dark, firm, 
and dry (DFD), normal (NORM), and pale, soft, and 
exudative (PSE) (Yang et al., 2021). Conventional 
methods, such as using a colorimeter to assess light-
ness (L*), a* and b*, usually involve interaction 
with meat surfaces, which could contribute to con-
tamination (Liu et al., 2018). As a result, developing 
a fast and non-destructive system for assessing meat 
quality is of great importance. Kamruzzaman et al. 
(2016) examined a HSI system at 400–1000 nm with 
the MLR model for red meat colour; the prediction 
results were: L* – (p  0.94, RMESP – 1.89, RPD – 
4.12); a* – (p  0.91, RMSEP – 1.40, RPD – 3.79) 
and; b* – (p  0.833, RMSEP – 1.37, RPD – 2.29), 
which proved good performance for predicting the 
red meat colour. A HSI system operating in the NIR 
region at 901–1710 nm combined with a PLSR model 
was used to determine the colour information of meat 
(ElMasry et al., 2012). The model showed good pre-
dicting results for L*– (cv – 0.88, RMSEP – 1.21) and 
b* – (cv – 0.81, RMSEP – 0.58). However, a* val-
ues were not satisfactory because the fell in a nar-
row range.

pH

pH is one of the most important consisten-
cy characteristics of beef. After being slaughtered, 
the acidity of meat increases (Kaswati et al., 2020). 
pH is an important technical factor that influences 
microbial development. It also has a major effect on 
meat colour, flavour, water holding capacity, water 
activity and shelf life. During salting, protein pre-
cipitation and solubilisation cause the pH of meat 
products to change. In salted and dry cured beef, 
pH is linked to water holding capacity and loss of 
water. pH can also differentiate pork into three cat-
egories, i.e. DFD, NORM and PSE (Yang et al., 
2021). A portable pH meter or a surface electrode 
are widely used to measure pH, but they are destruc-
tive and unstable methods, unsuitable for large-scale 
industrial applications. A HSI that operated in the 
VNIR region at 400–1000 nm was used to deter-
mine the pH of chicken meat. A fully cross-validat-
ed PLSR model was used (Yang et al., 2021), and 
measures (Rp – 0.854, RMSEP – 0.13) showed the 
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resulting model had good prediction rates. A simi-
lar model (VNIR-HSI, PLSR) was used (Kaswa-
ti et al., 2020) for pH prediction in chicken meat. 
The system yielded close results on fresh ( – 0.80, 
RMSE – 0.16) and spoiled ( – 0.84, RMSE – 0.18) 
chicken. Another HSI system in the NIR region, at 
900–1700 nm in combination with PLSR model 
resulted in strong prediction of pH in beef compared 
to other models (c – 0.83, RMSEC – 0.05, cv – 0.73, 
RMSECV – 0.16) (ElMasry et al., 2012). Parallel 
results were obtained with HSI system in the NIR 
region in combination with a PLSR model for turkey 
and ham at 900–1700 nm (c – 0.88, RMSEC – 0.02, 
cv – 0.81, RMSECV – 0.02) (Iqbal et al., 2013). The 
overall pH present in the meat and meat products 
was predicted to be from pH 5.3 to 6.2.

Moisture Content (MC)

Since water is a vital element of meat and meat 
products, MC is one of the most essential proper-
ties that determines the quality and safety of meats. 
Changes in MC have a significant impact on micro-
bial growth and meat quality traits (such as flavour, 
juiciness and appearance), processed meat stor-
age time and consumer purchasing desires. MC is 
usually measured using a number of convention-
al techniques, including drying using a hot air oven, 
microwave drying, freeze drying and infrared mois-
ture analysis (Yang et al., 2017). However, because 
of their time-consuming and complicated process-
es, general moisture analysis approaches are not 
suitable for evaluating a large number of samples. 
HSI technique was used to determine the MC in 
cooled meat samples (Liu et al., 2018) at 400–1000 
nm using a SPA-LS-SVM model, but results were 
not encouraging (p  0.869, RMSEP – 1.304, RPD 
– 2.724). However, better results were obtained in 
another study using HSI in combination with BP-
ANN and PLSR to model cooked meat at 400–1000 
nm (p  0.977, RMSEP – 0.915) (Yang et al., 2017). 
These results were superior to those of other pre-
diction models. Moisture content in salmon fish 
was better predicted by combining HSI with PLSR 
and LS-SVM models at 400–1753 nm (p  0.872 to 
0.934, RMSEP – 0.312% to 1.147%, RPD – 1.082 to 
4.034) (Wu and Sun, 2013a). Similarly, MC in oth-
er red meats (pork, lamb) was detected using HSI in 
NIR region at 400–1700 nm with a PLSR model (p 
 0.88, 0.942, RMSEP – 0.7682, 1.4736) (Kamruz-
zaman et al., 2012, Ma et al., 2017). The overall pre-
diction of MC in meat and meat products showed 
good results using HSI system.

Microbial Level
During storage, the wet, nutrient-rich fresh meat 

surface facilitates the growth of wide variety of spoil-
age bacteria. As a result, the total viable count (TVC) 
of bacteria is a valuable indicatior of meat’s micro-
bial control. When the TVC in meat exceeds a cer-
tain level, the bacteria tend to be pathogenic. How-
ever, since meat has adequate moisture and nutrients 
required for microbial growth and reproduction, par-
ticularly for the dominant spoilage microorganisms, 
chilled meat can harbour and support growth of Pseu-
domonas and Enterobacteriaceae at 0–4°C (Jiang et 
al., 2021). Cross contamination of meat carcasses with 
Escherichia coli, Salmonella and other bacteria can 
occur during the processing steps like bleeding, scald-
ing, feather removal, cleaning, chilling, and second-
ary processing (Cheng and Sun, 2015). To predict bac-
terial spoilage in meat, numerous chemical, physical 
and microbiological techniques were suggested. The 
majority of these techniques, on the other hand, take a 
lot of time, are destructive, involve complicated labo-
ratory processes and require repetitive sample prepara-
tion. As a result, the HSI approach to rapidly and pre-
cisely diagnose microbial spoilage in meat is widely 
u sed. Achata et al. (2020) studied TVC in beef using 
HSI in the VNIR region at 957–1664 nm using PLSR 
model. The results were not ideal (p  0.86, RMSEP – 
0.89 log CFU/g, RPD – 2.27). Using the same system 
(Yang et al., 2018) but with different modelling strate-
gies, N-PLS at 400–1000 nm, yielded better prediction 
results (p  0.934, RMSEP – 0.755) for TVC in beef. 
Similarly, Wu and Sun (2013b) predicted TVC in salm-
on fish, using HSI in the VNIR region at 400–1700 
nm with PLSR modelling technique, and showed this 
system had better performance (p  0.985, RMSEP – 
0.280, RPD – 5.127). Cheng and Sun (2015) used the 
same HIS system to predict whether there was E. coli 
contamination in fish using the PLSR and MLR tech-
nique at 400–1000 nm, (p  0.870, RMSEP – 0.274 
log CFU/g, RPD – 5.22). Similarly, Jiang et al. (2021) 
investigated the growth of Pseudomonas and Entero-
bacteriaceae in chicken under cold storage with HSI 
system operating in the NIR region at 9000–1700 nm 
in combination with MSC-PLS model, and achieved 
good prediction results (p  0.954, RMSEP – 0.396 log 
CFU/g, RPD – 3.33).

Adulteration
Adulteration and authenticity identification in 

meat and their products is becoming highly relevant as 
trade globalises (Zhao et al., 2019). Meat adulteration 
has direct impacts on consumer interests and can pose 
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many health risks. The horsemeat scandal in Europe 
several years back, for example, exposing meat adul-
teration process around the world, resulted in a major 
public confidence calamity (Leng et al., 2020). Meat 
composition products, such as hamburgers, meatballs, 
patties, salami and sausages, often use minced or fine-
ly chopped meat as a key component. Partial or com-
plete substitution of cheaper meat or addition of pro-
teins from animal or vegetable origins to minced meat 
and similar ingredients can be tempting to dishonest 
meat chain actors. Compared with several other spec-
troscopic studies for detecting adulteration in meat and 
meat products, HSI was the best rapid, non-destructive 
analytical technique to detect the level of adulter ation. 
Kamruzzman et al. (2015) determined the adulteration 
level of minced beef adulterated with horse meat using 
HSI in the VNIR region at 400–1000 nm with a PLSR 
model, which, among the systems examined, yield-
ed the best performance in prediction rates (p  0.98, 
RMSEP – 2.20%). Using the same system with the 
GD-RC model at 380–1000 nm predicted beef adulter-
ated with chicken meat (R – 0.9831, RMSEP – 0.0319) 
(Zhao et al., 2020). Jiang et al. (2020a) and Jiang et 
al. (2020b) experimented to detect the adulteration of 
minced pork with two different adulterants, namely 
minced pork jowl meat and leaf lard fats. A HSI sys-
tem with PLSR modelling strategy was established 
at 400–1000 nm which showed prediction results 
for minced pork jowl meat adulterant (p  0.9063, 
RMSEP – 13.93%, RPD – 2.30, LOD – 6.50%) 
and leaf lard adulterant (p  0.98, RMSEP – 4.87%, 
RPD – 6.57, LOD – 6.08%). In addition, HSI was con-
sidered for the detection of adulteration in prawns after 
the animals ingested gelatine that had been extract-
ed from mammal animal skins and bones using LS-
SVM model at 441–1734 nm range (Wu et al., 2013). 
The resultant prediction indicators were p  0.962, 
RMSEP – 0.339, RPD – 5.128.

Marbling

Marbling is characterised by the volume and 
spatial distribution of visible fat that occurs as thin 
layers in the muscle, whereby the entire tissue resem-
bles marble. It is considered to be a major meat trait 
that affects the acceptability of meat and their prod-
ucts. Fat lines that are evenly spread around the sur-
face of the beef cause marbling that is commonly 
associated with higher meat quality. The quantitative 
and spatial distribution of fat lines in meat and meat 
products that contain pork and beef, in which mar-
bling defines and distinguishes the commodity, lead 
to variations in eating consistency (Velásquez et al., 

2017). Marbling is a critical criterion for determin-
ing the consistency of beef. It is linked to the tender-
ness and flavour of beef. In general, beef with a lot of 
marbling has a tender feel (Li et al., 2011). Marbling 
detection is labour-intensive and difficult to visually 
grade, which makes it hard for a human observer to 
correctly determine the scores for marbling. Because 
of such drawbacks, the traditional approach is not 
suited for a fast-paced on-line operation (Huang et 
al., 2014). A HSI system that operated in the NIR 
region was established to detect marbling in meat 
products. Aredo et al. (2017) combined the HSI sys-
tem with a PLSR model at 400–1000 nm to meas-
ure marbling in beef; the system proved to be the 
most efficient method among those examined and 
resulted in Rp – 0.95, RMSEP – 0.3 BMS, Rc  0.98, 
RMESC – 0.2 BMS. Another study using the same 
system by Huang et al. (2014) showed the mar-
bling in pork meat at 900–1700 nm spectral range 
with results of Rv – 0.90, RMSEV – 0.52, Rc – 0.91, 
RMSEC – 0.34. This established the good perfor-
mance of the HIS system in detecting the level of 
pork meat marbling.

Fat

Intramuscular fat (IMF) content in meat is 
described as the total amount of dispersed spots of fat 
within edible muscle. It reflects the amount of fat in 
meat, and has a considerable effect on meat cooking 
quality, consumer satisfaction and consumer health. 
Although higher IMF levels are associated with great-
er market acceptance, consumer preferences differ by 
geographic location (Huang et al., 2017). The content 
and structure of the IMF have a significant impact on 
other consistency attributes including juiciness, ten-
derness and flavour. The IMF is released during mas-
tication that activates the salivary glands, resulting in 
juiciness. Fat improves muscle tenderness by weak-
ening the muscle’s elastic strength and preventing 
cross-linking between connective tissue and muscle 
fibre proteins, allowing the muscle to be split open 
easily in the mouth with less friction. Because of their 
contact with Maillard reaction products to liberate 
volatile compounds during the cooking of beef, fat-
ty acids affect meat taste (Kucha et al., 2020). Zhao et 
al. (2017) studied fat content in beef using a HSI sys-
tem in the NIR region 880–1720 nm with PLSR, and 
computed the following results: p  0.90, RMSEP – 
1.72% to 1.83% w/w. Another study was carried out 
using the same system (Kamruzzaman et al., 2012) 
for determining the fat content in lamb meat at spec-
tral range 900–1700 nm gave the prediction statistics 
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of p  0.88, RMSEP – 0.35%, RPD – 3.20. The results 
indicated HIS would be much better for detecting fat 
percentage in lamb meat than the other chemometric 
analysis methods. Similarly, other studies were con-
ducted for pork (Huang et al., 2017) and fish (Zhang 
et al., 2020) in the spectral range 900–1700 nm 
showed reasonably good prediction statistics of Rp – 
0.83 for pork and Rp  0.9685 for fish.

Future Trends and Challenges

Despite the above benefits, HSI has several 
restrictions in meat industry applications. One such 
concern is the speed of HSI, which is a major down-
side. It requires a very long time for handling, display-
ing and processing the data. As a result, the HSI sys-
tems’ speeds must be increased in order to speed up the 
collection and examination of spectral data. The cost of 
HIS is another drawback to its widespread application. 
HSI systems are considerably more expensive than 
multispectral imaging systems. For the outcome in real 
time applications, a multispectral imaging device of 
chosen wavelengths is an alternate promising solution. 
HIS has been researched by several groups in order 
to determine the most powerful wavelengths for con-
structing on-line multispectral imaging instruments. 
Since HSI is used to develop dedicated multispectral 
vision systems, it is important to think about wave-
length range in all HIS techniques. The agricultural 
industry would benefit greatly if the food processing 
industry could incorporate spectral imaging technolo-
gies in real-time modes. However, a major significant 
drawback of HSI is that it is not a direct tool, and so 

its implementation involves systematic calibration and 
model transition procedures. As a result, moving these 
off-line lab applications to an on-line manufacturing 
environment will take more time and resources.

Conclusion

The quality and safety evaluation of meat and 
meat products that is achieved by rapid, objective, and 
non-destructive calculation and prediction of techni-
cal parameters and various classifications is crucial. 
HIS incorporates the complete benefits of spectros-
copy and computer vision, which are the two tradi-
tional techniques used. HIS systems offer both spatial 
and spectral information; as a result, this technolo-
gy provides new sensing capabilities that improve 
beef, poultry, and fish examination. In this review, 
the application of HSI to detect quality and safe-
ty attributes of tenderness, colour, pH, moisture con-
tent, microbial level, adulteration level, marbling and 
fat percentage in meat and meat products was pre-
sented. Various chemometric parameters can be pre-
dicted with HIS systems in different spectral ranges 
and predicted results are then analysed statistical-
ly (by tools like PLSR, MLR, LS-SVM). The results 
show that spectral data could be used to replace labo-
rious and time-consuming standard analytical meth-
ods, offering a simple and non-destructive testing tool 
for the meat industry. However, there is still potential 
for progress in the production of low-cost multispec-
tral imaging systems for particular applications. The 
important wavelengths specified in this review can be 
used to build HIS systems for specific applications.

Hiperspektralno snimanje u proceni kvaliteta mesa, 
ribe, živine i njihovih proizvoda

Charan Adithya S.

A p s t r a k t: Meso i proizvodi od mesa su bogati izvori hranljivih sastojaka u svakodnevnoj ishrani. Procena kvaliteta i be-
zbednosti hrane, uključujuć i mesa, su od suštinskog značaja zbog njihove kvarljivosti i osetljivosti. Potreba za analizom prehrambenih 
proizvoda u realnom vremenu podstakla je pronalazak nedestruktivnih mernih sistema. Hiperspektralno snimanje (HSI), u kombinaciji 
sa različitim metodama statističke analize, kao što su višestruka linearna regresija (MLR — Multiple Linear Regression), metoda pot-
pornih vektora koja koristi tehniku najmanjih kvadrata (LS-SVM — Least Squares-Support Vector Machine) ili delimična regresija naj-
manjih kvadrata (PLSR — Partial Least Squares Regression), kreirano je kao brzi, nedestruktivni, neintruzivni proces bez hemikalija 
za određivanje važnih aspekata kvaliteta i hemometrike hrane. HSI sistem se koristi za prikupljanje spektralnih i prostornih podataka. 
Ovaj revijalni rad daje uvid u nedavni razvoj i primenu HSI sistema za otkrivanje kvalitetnih i bezbednosnih odlika kao što su mekoća, 
boja, pH, sadržaj vlage, mramoriranost, masnoć a, sadržaj mikroba i falsifikovanja mesa, ribe i živinskog mesa i njihovih proizvoda. 
Sve u svemu, HSI tehnologija ima ogroman potencijal da klasifikuje različite parametre mesa i njegovih proizvoda.

Ključne reči: hiperspektralno snimanje, klasifikacija, meso, procena kvaliteta, detekcija bezbednosti.
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